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Equations for the mean residence time (MRT) of drug in the body and related functions are derived for
drugs which are intravenously administered into a one- or two-compartment system with Michaelis—
Menten elimination. This MRT is a function of the steady-state volume of distribution and time-
average clearance obtained from the dose and area under the curve (dose/AUC). The differences
between the MRT calculated by the proposed method and by using the moment theory method
(AUMC/AUC) are demonstrated both mathematically and by computer simulations. The validity of
the proposed method for calculation of MRT and its relationship to the moment theory result have
also been assessed by examining the percentage of the administered dose eliminated and the per-
centage of the total area attained at MRT and at AUMC/AUC in relation to the dose. The equations
evolved should be helpful in clarifying residence time derivations and in defining the disposition char-
acteristics and differences between linear and nonlinear systems. Direct methods are provided for
calculation of Michaelis—Menten parameters based on the relationship between MRT and dose.

KEY WORDS: mean residence time; moment analysis; pharmacokinetics; Michaelis—Menten elimi-
nation; compartmental models.

INTRODUCTION

Application of moment theory to linear pharmacoki-
netics (1-3) has become increasingly popular because of the
ease of estimation of commonly used pharmacokinetic pa-
rameters such as mean residence time (MRT), plasma clear-
ance (CL), and steady-state volume of distribution (V). As
frequently used to describe drug disposition, the moment
theory approach utilizes the area under the plasma concen-
tration—time curve (AUC) and the area under the first mo-
ment curve (AUMC) to calculate MRT and V as shown
below:

MRT = AUMC/AUC = f i - dd f e - dr
’ ’ (la, b)
and
V. = MRT-CL = D- AUMC/AUC?  (2a, b)

where C(t) is the drug concentration at time ¢, and D is the
intravenous bolus dose administered.

Calculation of MRT and V using Egs. (1) and (2) is
based upon two assumptions (2): (a) the drug must exhibit a
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linear disposition process; and (b) the drug must be adminis-
tered to and eliminated from only the sampling (central)
compartment. The first of these assumptions implies that in
nonlinear systems the calculation of MRT using Eq. (1) is
not valid. Moreover, since plasma clearance is not constant
in nonlinear systems, the V, calculated using Eq. (2) has
also been suspect.

Rescigno (4) has defined the time of exit (Z,) character-
izing tracer Kinetics as

J’w T K™ X(7)dr
Z, = = (3)
f K™ - X(7)dr

0

where K™ is the fraction of material leaving a compartment
irreversibly per unit time, and X(7) is the amount of tracer
present in the compartment at time 7. In terms of pharmaco-
kinetic analysis, the analogous expression for Z, is

o

f t- CL() - Clo)dt
0

Zy = — )
f CL() - C(t)dt
0

For the case of intravenous bolus administration of a drug,
Z, equals MRT (4). Thus, besides Eq. (1), MRT can also be
defined as follows:
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f ) t - CL(¢) - C(r)dt
0

MRT = (&3]

CL() - C(n)dt
(1]

It should be noted that Eq. (5) has recently been mathemati-
cally verified. Gillespie and Veng-Pedersen (5) clarified this
as the most appropriate starting point in deriving MRT
values and have pointed out that Eq. (1a) follows from Eq.
(5), if plasma clearance relative to plasma concentration is
constant. In terms of compartmental analysis, the occur-
rence of constant clearance satisfies the assumption pre-
viously mentioned that the drug must exhibit linear disposi-
tion. However, if plasma clearance is not constant (¢.g.,
clearance follows the Michaelis—Menten equation), Eq. (1a)
cannot be obtained from Eq. (5) and is no longer valid for
calculation of the true MRT. Thus Eq. (5) is the correct
equation to derive MRT values for drugs exhibiting either
linear or nonlinear behavior. It should be noted that calcula-
tion of MRT using Eq. (5) is based only upon the second
assumption mentioned previously, that administration and
elimination of drug occur from the central compartment.

For drugs which are administered intravenously into the
body and eliminated by a single, capacity-limited process,
the concept of dose- and time-averaged parameters and the
following relationship between MRT and V have been pro-
posed (6-8):

MRT = V,/CL (6)

where CL has been defined as the time-average clearance
(7,8) according to

CL = D/AUC (7

Since CL must decrease as the dose increases, MRT would
be expected to increase. Therefore, Eq. (6) appears to bear
some relevance to nonlinear pharmacokinetics. Indeed,
MRT based on Eq. (6) has been shown to be meaningful in
computer simulation studies (7,8). However, Eq. (6) has not
been mathematically verified.

The purpose of this report is to derive and clarify Eq.
(6) for a drug injected intravenously into a one- or two-com-
partment system and eliminated by a single, Michaelis—
Menten process. Also, mathematical derivations and com-
puter simulations are used to demonstrate differences be-
tween two approaches for calculating MRT, namely, the use
of Eqs. (1) and (6). We show that the apparent MRT calcu-
lated using AUMC/AUC does not provide the true MRT for
these nonlinear systems.

THEORETICAL

One-Compartment Model

For a drug which follows a one-compartment model
having only Michaelis—Menten elimination, the rate of de-
cline of drug concentration [C(#)] with time () after intrave-
nous bolus administration can be described by the equation

L. 4O Vo CW)
dt K, + CQ@

= CL() - C(t) (8a,b)
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where V is the apparent volume of distribution, Vi, is the
theoretical maximum rate of the process, K,, is the Mi-
chaelis constant, and CL(z) is the plasma clearance relative
to the drug concentration at time ¢. The mean residence time
of drug in the body, MRT, can be calculated according to
Eq. (5). Multiplying both sides of Eq. (8b) by dr yields

—V-dC(t) = CL(1) - C(»)at 9

Since atr = 0, C(r) = Cy, and at t = =, C(¢) = 0, it follows
that

0 oo
—-| V-dC@) = f CL(#) * C(r)dt 10)
Co 0
or
f CL() - Cydt = V-Co =D (lla, b)
(V]
Multiplying both sides of Eq. (8b) by ¢ - dr yields
—V-t-dC@) = CL(t) - t- C(t)dt 12)

Integrating over the limits C(¢) = Cyatt = 0and C(¢) = 0 at
t = o yields

0
-] V-t-dCQ) =

Co

fm CL(#) - t - C(t)dt 13)
(1]

which, when solved using the method of integration by
parts, becomes

V- f " Cwydr = f T CL(®) -t Coyde (18)
(] 0

or

r CL() - t- C(t)dt = V- AUC (15)

0

By substituting the components of Eqs. (11) and (15) into
Eq. (5), the result is

AUC _ V- AUC

MRT = (16a, b)
Cy D
Also, combining Eqgs. (7) and (16b) yields
MRT = V/CL (17)

where CL is the time-average clearance obtained from
D/AUC as elaborated on further below.
The following equation has been derived previously by
Wagner (9) for the present model:
Co G
AUC = V-G, —2—+ K,lIV,=D- 7 + K, [V
(18)

Rearranging terms yields

D Co
—— =V A=+ K,
AUC 2
Therefore, substituting for D/AUC in Eq. (7) according to
Eq. (19) gives

(19)

E~V/<C°+K)—V/(£+K> (20a, b)
- m 2 m - m2V m s
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Substitution for CL in Eq. (17) according to Eq. (20) yields

Cy D
MRT=V-|—+ K, J/V,=V:-|—+ K, J/V,
2 2V
(21a, b)
Analogous expressions for CL and MRT have been de-
scribed by Smith (7) and Cutler (10). Recently, Chow and

Jusko (11) have derived the AUMC/AUC value for this
system as

K, V- C2Cyp + 3K,)
AUMC/AUC = V- — (22
Vo 6-V,-(Co+ 2K,)
or
K, D2C, + 3K,)
AUMC/AUC = V- — + (23)
Vm 6°Vy-(Cy + 2K,)
Subtracting Eq. (23) from Eq. (21) yields
D-(Cy + 3K,)
MRT — (AUMC/AUC) = (24)
6V, - (Co + 2K,)
Here, we define this relationship as AMRT:
AMRT = MRT — (AUMC/AUC) 25)

By substituting the components of Eq. (24) into Eq. (25), the
result is

D-(Co + 3K,)

AMRT = (26)
6-V, (Cy +2K,)
Dividing both sides of Eq. (26) by Eq. (21) yields
Co (Cy + 3K,
AMRT/MRT — S0 (Co * 3 Kn) @7

3:-(Cy + 2K,P

Two-Compartment Model
For this model (see Appendix), it can be shown that
Vi - AUC Vg,

MRT = = =
D CL

(28a, b)

Equation (28b) is identical to Eq. (6). For one-compartment
systems, since V equals V,, Eq. (17) is also identical to Eq.
(6). Therefore, the calculation of MRT using Eq. (6) is valid
for drugs exhibiting nonlinear kinetic behavior.

The following equations, which are similar to Eqs. (20)
and (21), have been shown with computer simulations to be
meaningful for the two-compartment Michaelis—Menten

system (8).
D
AUC = D ( + K,,,)/Vm 29
— D
CL = Vm/( + K,,,) 30)
2 Vss
D
MRT = V- <— + K,,,)/Vm 31
2 Vg

Similarly, from simulation, it can be shown that for two-
compartment Michaelis—Menten systems,
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D-[(2D/Vy) + 3 K,]
6 Vil(DIVy) + 2K,

K
AUMC/AUC = V- V—"' +

(32)
Therefore, it follows that
AMRT = MRT - (AUMC/AUC)
D-[(DIVy) + 3K,]
= (33a, b)
6- V- DIV + 2K,]
Dividing both sides of Eq. (33b) by Eq. (31) yields
AMRT/MRT =
AR VA GRS
— |+ 3K, 3-|— + 2K,
VSS VSS VSS
(34

It should be noted that Eqs. (32), (33), and (34) are similar to
Egs. (23), (26), and (27) and Egs. (30)—(34) are valid for both
one- and two-compartment Michaelis—Menten systems.

In the limiting low-dose case such that D/V is much
smaller than K,, MRT [Eq. (31)] reduces to V - K,./V,,.
Similarly, AUMC/AUC [Eq. (32)] reduces to (4 V- K,, +
D)/4 V. Because in this limiting case, D is much smaller
than V - K,, and is negligible compared to the latter,
AUMC/AUC reduces further to V - K,,/V,,. Thus,

MRT = AUMC/AUC = V- K,/V, (35a,b)
and
AMRT = MRT — (AUMC/AUC) = 0 (36)

Also, in the limiting high-dose case such that D/V, is much
larger than X, Eqgs. (31), (33b), and (34) reduce to

MRT = D/2 - V,, 37)
AMRT = (38)
6V,
AMRT/MRT = 0.333 (39)
or
(AMRT/MRT) x 100% = 33.3% (40)
METHODS

Based on intravenous bolus administration, plasma
concentrations of drug were generated by numerical integra-
tion of the appropriate differential equations [Eqs. (8a) or
(Al) and (A2)]. The fourth-order Runge-Kutta method was
used on an IBM XT system for the following models: (a) the
one-compartment Michaelis—Menten system and (b) the
two-compartment Michaelis—Menten system (Fig. 1). In the
first case, simulated data were obtained by assigning numer-
ical values of V., (433.2 mg/day), K,, (3.62 mg/liter), V (57
liters), and various doses (1-1800 mg). Similarly, in the
second case, numerical integrations were carried out by as-
signing values of V,, (54.2 mg/hr), K,, (36.2 mg/liter), CL,
(distribution clearance, 28.7 liters/hr), V. (29.5 liters), Vi
(20.7 liters), R = 1, and various doses (50-30,000 mg).
Tissue concentrations of drug were also generated to calcu-
late the percentage of the dose eliminated at MRT and
AUMC/AUC [i.e., A(MRT)% and A.(AUMC/AUC)%]. The
range of doses used in both cases ensures that typical be-
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Fig. 1. The basic one (a)- and two (b)-compartment
models used for elaboration of MRT relationships.
Symbols are defined in the text.

havior would be observed in the limiting low-dose case
(pseudo-first-order elimination), for middle doses (the Mi-
chaelis—Menten pattern), and in the limiting high-dose case
(initial pseudo-zero-order decline). The values of AUC,
AUMC, AUC .yrr and AUC,, sumcauc Were calculated
using the LAGRAN program (12). Values for CL at different
doses were also generated using Eq. (30).

To illustrate differences between MRT and AUMC/
AUC, values of MRT, AUMC/AUC, AMRT, and (AMRT/
MRT) x 100% at different doses were calculated by numer-
ical integration to obtain AUC and AUMC and direct use of
Eqgs. (31) and (25). Values of MRT and AUMC/AUC ob-
tained for the same sets of data were compared.

To confirm that calculations of MRT using AUMC/AUC
differ from the newly derived MRT value [Eqgs. (21) and
(3D, A.(MRT)% and A.(AUMC/AUC)% were calculated by
using simulated concentration data. In addition, the per-
centage of the total AUC attained at MRT and the AUMC/
AUC were also calculated.

RESULTS

One-Compartment Model

Simulations were performed to demonstrate the rela-
tionships between derived and computer-generated values
of the pharmacokinetic and moment parameters. Using Eq.
(8a), the simulated plasma concentration—time data shown
in Fig. 2 were obtained for five drug dose levels. The lower
linear curve and the upper saturation curves indicate first-
order behavior at the lowest dose and pseudo-zero-order be-
havior at early time values for the highest dose. Included
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Fig. 2. Simulated concentration-time pro-
files for the one-compartment model using
Eq. (8a) with parameter values of V, =
433.2 mg/day, K,, = 3.62 mg/liter, V = 57
liters, and D = 1, 100, 600, 1200, and 1800
mg (in ascending order). Triangles denote
AUMC/AUC (V) and MRT (V) for the
1800-mg dose function.

also in Fig. 2 are curves which show the intermediate Mi-
chaelis—Menten behavior at middle doses.

Table I lists the doses and the parameters, CL, MRT,
and AUMC/AUC calculated using Eqs. (20) and (21) for the
simulated data plotted in Fig. 2. As shown in Table I, as the
dose decreases, CL increases and MRT decreases. In addi-
tion, calculations using AUMC/AUC give different values
from the method of calculating MRT using Eq. (21). Table I
also shows the relationship of AMRT to dose. As the dose
increases, AMRT increases and values of (AMRT/MRT) X
100% increase from 0 to 29.4%. This trend is well illustrated
by the plot of MRT and AUMC/AUC vs dose shown in Fig.
3. According to Eq. (21b), a plot of MRT versus dose yields
a straight line with a slope of 1/ (2V,,) and an intercept of V -
K, /V,.. This leads to one method for calculation of the Mi-
chaelis—Menten parameters from such a graph. If V is gen-
erated from D/C,, then

Vi, = 142 - slope) 41)

Table I. Comparison of MRT and AUMC/AUC Values at Different Doses of Drug for a One-Compartment Michaelis—Menten System

Dose CL MRT AUMC/AUC AMRT (AMRT/MRT) X 100%
(mg) (liters/day)= (days)? (days)¢ (days)? (%)
1 118.8 0.48 0.48 0 0
100 96.3 0.59 0.54 0.05 8.47
600 48.8 1.17 0.89 0.28 239
1200 30.6 1.86 1.34 0.52 28.0
1800 22.3 2.55 1.80 0.75 29.4

@ Calculated using Eq. (20).
& Calculated using Eq. (21).

¢ Calculated by numerical integration using Eq. (1) and data from Fig. 2.

4 Calculated using Eq. (25).
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Fig. 3. MRT (@) and AUMC/AUC (O) as a function of dose
for the one-compartment Michaelis—Menten system. AMRT
is denoted by the vertical bar.

1
500

and
K, = (42)

Recently, the use of Eq. (21) to estimate K, and V,, has also
been suggested by Cutler (10). Alternatively, these param-
eters can be obtained by nonlinear least-squares regression.
The AUMC/AUC relationship to dose in Fig. 3 is nonlinear
as anticipated from Eq. (23) but converges to the same low-
dose intercept as the MRT value.

Table II contains additional calcuiations which demon-
strate various relationships between MRT and AUMC/AUC
as viewed from the perspective of percentages of the dose
eliminated and of the total AUC attained at these times. It
can be seen that A (MRT)% decreases from 63.2 to 52.7%,
while AL (AUMC/AUC)% decreases from 63.2 to 37.9% as
the dose increases. Also, the percentage of the total area
attained at MRT increases from 63.2 to 73.2%, while the per-
centage of the total area attained at AUMC/AUC decreases
from 63.2 to 57.0% over the same dosage range.

Vi * intercept/V

Two-Compartment Model

The same procedures used for the one-compartment
model were carried out for a system exhibiting two-com-
partment distribution and Michaelis—Menten elimination.
Figure 4 presents a plot of the simulated concentration—time
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Fig. 4. Simulated concentration—time profiles for the
two-compartment model using Eqgs. (Al) and (A2) with
parameter values of V, = 54.2 mg/r, K,, = 36.2 mg/
liter, CL = 28.7 liters/hr, V. = 29.5 liters, V = 20.7
liters, R = 1, and D = 50, 250, 1000, 2000, and 30,000
mg (in ascending order). Triangles denote AUMC/AUC
(V) and MRT (V) for the 30,000-mg dose function.

profiles. As shown in Table III, the relationships among
dose, CL, and MRT observed for the one-compartment
system also hold for the two-compartment model. Except at
the limiting low-dose case, the methods of calculating MRT
and AUMC/AUC yield different values. As also shown in
Table III, as the dose increases, AMRT diverges and
(AMRT/MRT) X 100% increases from 0 to 31%. This trend
is also illustrated in Fig. 5, showing the linear relationship
between MRT and dose, with a slope of ¥2- V and an inter-
cept of Vi, - K,,/V,,. In this instance, if low-dose data are
available to generate V, from Eq. (2), then V,, and K, can
be calculated from the slope [Eq. (41)] and intercept [Eq.
(42)], where V is now used instead of V.

Values of percentage drug eliminated at MRT and
AUMC/AUC are listed in Table IV. For the range of doses
studied, A.(MRT)% lies between 51.6 and 63.1%, while
AJLAUMC/AUC)% ranges from 36.0 to 63.0%. In addition,
as the dose increases from 50 to 30,000 mg, the percentage

Table II. Comparison of the Percentage of the Administered Dose Eliminated and the Percentage of the Total AUC Attained at MRT and at
AUMC/AUC for a One-Compartment Michaelis—Menten System

Dose MRT AUMC/AUC A, (MRT) A, (AUMC/AUC) AUC, ,mrr/AUC AUCq, aumcrauc/ AUC
(mg) (days) (days) (%) (%) (%) (%)
1 0.48 0.48 63.2 63.2 63.2 63.2
100 0.59 0.54 61.0 57.4 65.8 62.4
600 1.17 0.89 56.2 52.3 70.6 58.7
1200 1.86 1.34 53.8 39.7 72.3 57.5
1800 2.55 1.80 52.7 37.9 73.2 57.0

V- C@®)

a Calculated as [1 — ] X 100% at t = MRT.

b Same as footnote a except + = AUMC/AUC.
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Table III. Comparison of MRT and AUMC/AUC Values at Different Doses of Drug for a Two-Compartment Michaelis—Menten System

Dose CL MRT AUMC/AUC AMRT (AMRT/MRT) x 100%
(mg) (liters/hr)? (hr)® (hr)c (hr)4 (%)
50 1.48 34.0 339 0.01 0.03
250 1.40 35.8 34.8 1.00 2.79
1,000 1.17 42.8 38.5 4.30 10.0
2,000 0.97 52.0 43.8 8.20 15.8
30,000 0.16 310.0 214.0 96.0 31.0

@ Calculated using Eq. (30).
b Calculated using Eq. (31).
¢ Calculated by numerical integration using Eq. (1).
4 Calculated using Eq. (25).

of the total area attained at MRT increases from 63.1 to
73.8%, while the corresponding value at AUMC/AUC de-
creases from 63.0 to 56.3%.

DISCUSSION

Equations for the MRT of drug in the body have been
derived for drugs which follow one- or two-compartment
models and are eliminated by single, capacity-limited pro-
cesses. As shown in Eqgs. (28a) and (31), this MRT can be
generalized as the quotient of V; and CL as well as a more
specific function of V, D, V,, and K,,. In addition, a gen-
eral, multicompartment equation defining AUMC/AUC was
also obtained. This AUMC/AUC is also a complex function
of V., D, V,,,, and K,, but does not equal MRT.

As shown in Tables I and III, the conventional moment
approach using Eq. (1) is adequate for estimating the true
MRT only in limiting low-dose cases. For middle- and high-
dose situations, the AUMC/AUC method underestimates
MRT. If one uses AUMC/AUC to calculate the MRT for a
drug eliminated from the body in a nonlinear fashion, the
calculation error of MRT will range from negligible (0%) at
low doses to moderate (33.3%), depending on the severity of
the nonlinear condition.

In the limiting cases MRT corresponds to the time for
50.0% (high dose) or 63.2% (low dose) of the administered
dose to be eliminated (3). This allows Eq. (6) to be verified

350
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Fig. 5. MRT (@) and AUMC/AUC (O) as a function of dose
for the two-compartment Michaelis—Menten system. AMRT
is denoted by the vertical bar.

by computer simulations. Indeed, we directly examined this
(Tables II and IV). In addition, differences in results using
the traditional moment method have also been demon-
strated. The percentage of the dose eliminated at AUMC/
AUC from both the one- and the two-compartment Mi-
chaelis—Menten systems ranges from 36.0 to 63.2% instead
of from 50.0 to 63.2%. Similarly, Eq. (6) was also verified by
computer simulations by examining the percentage of the
total AUC attained at MRT (Tables II and IV). In the limiting
low-dose case, MRT represents the time required for 63.2%
of the total AUC to be attained, while in the limiting high-
dose case, the MRT occurs at 75.0% time. Therefore, it can
be observed that the MRT in Michaelis—Menten systems is
not a constant as occurs in a linear disposition system, but
the true MRT values fall in a specific, limited range of times.

Thus, by examining the one- and two-compartment Mi-
chaelis—Menten models, we have shown that utilization of
AUMC/AUC to calculate the true MRT is limited to linear
pharmacokinetics. In contrast, MRT defined by V- AUC/D
is meaningful in both linear and nonlinear systems. It should
be noted that, although the equations developed in this re-
port have been based only on one- and two-compartments,
the principal relationships using CL and V,, can also be ap-
plied to other multiple-compartment systems with linear dis-
tribution and Michaelis—Menten elimination. While the der-
ivation methods are not as general as a purely ‘‘noncom-
partmental’” approach, they assist in defining the properties
of two important models and ease the verification of the re-
lationships by computer simulations.

For multiple-compartment models the upper restriction
of A(MRT)% or A(AUMC/AUC)% of 63.2% is applicable
only in those cases where the rate-limiting step is elimina-
tion instead of tissue-to-plasma distribution (unpublished
observations). Thus, even in the limiting low-dose case, the
use of cumulative urinary excretion data will not necessarily
give a valid estimate for MRT of drugs following a multiple-
compartment model.

One of the major advantages of moment analysis in
linear pharmacokinetics is that the area and moment
(AUMC) of any curve after intravenous administration of
drug can be used to calculate directly CL (D/AUC) and V
[Egs. (1) and (2)]. We now can view the complexities which
ensue when drug disposition is nonlinear. Firstly, the AUMC
no longer easily generates V,, and CL is, of course, not a
constant. If drug distribution is one compartmental, the cal-
culations of the cardinal pharmacokinetic parameters be-
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Table IV. Comparison of the Percentage of the Administered Dose Eliminated and the Percentage of the Total AUC Attained at MRT and at
AUMC/AUC for a Two-Compartment Michaelis—Menten System

Dose MRT AUMC/AUC A, (MRT) A, (AUMC/AUC) AUCq_wer/AUC AUCq, sumciaucd/ AUC
(mg) (hr) (hr) (%) (%) (%) (%)
50 34.0 33.9 63.1 63.0 63.1 63.0
250 35.8 348 62.5 61.4 64.0 62.9
1,000 428 38.5 60.9 56.7 66.1 62.0
2,000 52.0 4338 59.5 52.1 68.0 61.0
30,000 310.0 214.0 51.6 36.0 73.8 56.3

Ve G0 + Vy- CH)
D

a Calculated as [1 - } X 100% at t = MRT.

# Same as footnote a except 1 = AUMC/AUC.

come modestly involved. First, the true MRT must be ob-
tained from AUC/C,. Then, CL is a concentration-average
value when generated from D/AUC but can be related to the
fundamental parameters, V, and K, via Eq. (20). The
volume of distribution must be obtained from D/C,. Of value
is the ability then to obtain V,, and K,, from a plot of MRT
versus dose as depicted in Fig. 3 and using Eqs. (41) and
(42). According to Eq. (41), the accuracy of this approach to
estimate K, depends on the certainty of both V and V. In a
real situation where drug elimination is nonlinear and sam-
pling times are not close to zero, it should be noted that the
extrapolation back to zero time to estimate V may not be
easy or sufficiently exact.

For multicompartmental drugs, further complications
exist. The AUMC/AUC is slightly smaller than the true
MRT, and both change with the dose (Fig. 5). A problem is
that the MRT cannot be independently generated for all dose
levels. First, V must be calculated at a low dose using con-
ventional methods such as Eq. (2). This, however, does re-
quire that the realities of assay sensitivity versus saturable
kinetics be treated. Then this V value can be employed to
obtain the true MRT for larger doses using Eq. (28). Thus we
lose the ease of handling data regardless of the dose and in
visualizing the MRT as a constant value on the time axis.
However, we gain a direct approach to calculation of V,, and
K, from the slope and intercept of a graph such as shown in
Fig. 5. Trying to fit these parameters for multicompartment
systems using traditional approaches is otherwise difficult.

We have shown that the AUMC/AUC is an apparent,
and not the true, MRT for nonlinear pharmacokinetic
systems. However, the AUMC/AUC parameter remains of
analytical value owing to its ease of computation and the
ability to relate it to the fundamental parameters of the
system. It was shown previously (11) and in Eq. (22) for a
one-compartment system that AUMC/AUC is defined by the
D, V,, K,,, and V of the drug. As indicated in Eq. (32), we
now find that V, may be substituted for V in this relation-
ship for application to multiple-compartment systems. To-
gether with the AUC value [Eq. (29)], it is feasible to employ
these equations in nonlinear regression analysis to generate
either least-squares or population average values of V, K,
and V for multiple nonlinear drug disposition profiles (11).
In addition, since pseudo-first-order elimination occurs at
limiting low-dose situations, estimating V, by using AUMC/

AUC and Eq. (2) is feasible for weakly nonlinear systems. It
can be noted that in linear pharmacokinetic systems which
may actually constitute limiting low-dose nonlinear condi-
tions, CL is dose or concentration independent:

limCL = CL = VK,
D—0

(43a, b)

where CL is a constant plasma clearance.

Further clarification of the meaning of CL is possible.
By substituting Eq. (11b) into Eq. (7), we can define CL
more specifically as follows:

f ) CL®) - C(t)dt
(V]

CL = (44)

f ) C(t)dt
0

Although Eq. (7) is analogous to Eq. (44), the latter equation
mathematically more rigorously defines CL. Thus, the so-
called ‘‘time-average clearance’’ is actually better described
as the ‘‘concentration-average’’ clearance.

The concept of CL is of value for several reasons. The
CL parameter allows two useful parameters, MRT and Vg,
to be closely related regardless of the linearity of the system.
As shown in Egs. (7) and (30), D/AUC can also be related to
Vs K, and Vi through the CL parameter. This allows us to
generate values of V,, K,,, and V by computer iteration to
characterize nonlinear systems with Michaelis—Menten
elimination. Moreover, of considerable importance is that
this concept can be applied to any nonlinear processes asso-
ciated with drug disposition.

Veng-Pedersen and Gillespie (13) and Benet (14) have
pointed out that for drugs exhibiting Michaelis—Menten
elimination following an intravenous bolus dose, the mean
residence time in the central compartment (MRT,) can be
calculated according to the following equation:

MRT, = AUC/C, 45)
From Eqs. (28) and (45) it follows that
MRT Ve
= (46)

MRT, V.



Mean Residence Time

While Eq. (46) has been given for linear systems (14), here
we show that this relationship is also true for nonlinear
systems.

Although, historically, evidence of nonlinear pharmaco-
kinetics has been discovered as early as those of linear
systems, the theoretical development of nonlinear pharma-
cokinetic concepts has lagged owing to the mathematical
and experimental complexity of such systems. This report
shows the interrelationships between linear and nonlinear
plasma clearance models, amplifies the definition and rele-
vance of the time-average (concentration-average) clearance
parameter, derives and further examines the meaning of
MRT and AUMC/AUC for these systems, and provides new
methods for calculation of Michaelis—Menten parameters in
these complex systems.

APPENDIX: MRT FOR THE
TWO-COMPARTMENT MODEL

For a drug which follows a two-compartment model
having only Michaelis—Menten elimination from the central
compartment, the rates of change of drug concentration in
plasma [C(¢)] and in tissue [C(#)] with time after intravenous
bolus administration can be described by the following
equations:

L ACW _ Ve CO L. Cy + CLD.C )

¢ dt K, + C@ P R T((Al)
Vi dCi() . _CLp
R o CLyp - C(9) R C1(d) (A2)

where V_ and V7 are the apparent volumes of distribution of
the central and tissue compartments, CL is the intercom-
partmental or distribution clearance, and R is the
tissue:plasma distribution ratio. It is assumed that an intra-
venous bolus dose of drug into the central compartment pro-
duces initial conditions of Cy = D/V_ and C(0) = 0.
Multiplying both sides of Eq. (A2) by R - dt yields
Vi+dC{t) = R-CLp - C(t)dt — CLy - C(t)dr (A3)

Since C(0) = 0 and Cy(x) = 0, it follows that
0=R-CLp- f C(tydt — CLy - f Codt  (Ad)
(V] 0

or
AUC; = R - AUC
Multiplying both sides of Eq. (A2) by R - ¢ - dt yields
Vi<t+dCy = R-CLp-t-Ct)dt — CLp -t~ Cr{t)dt
(A6)

Integrating over the limits t = 0 and ¢ = « and solving the
equation using the method of integration by parts yields

—Vy+ AUCy = R+ CLy - AUMC — CL; - AUMCy
(A7)

(AS5)

or

CLp - AUMCy — R - CLp - AUMC = V- AUC
(AB)
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Multiplying both sides of Eq. (A1) by ¢ - dt yields
Vo t - C(t)dt
Voot-dC(t) = —————— — CLp-t- C(t)dt
K, + C@)
+ —— -t Cp(t)dt (A9)
R
or
Ym0 COAE_ L 4c) - Cly - 1+ Clodr
K,+CH ¢ P
+ X <t - Cr(t)dt (A10)

Integrating from ¢t = 0 to ¢t = = yields
Vit C)dt

K.+ c) —VC-J; t-dC(@)

- CLp f t- C()dt

0

R f t - Cp(n)dr (Al1)

0

which, when solved using the method of integration by

parts, becomes
* Voot C(H)dt
————— =V, - AUC - CL ' AUMC
b K, + C()

L
n D

AUMC; (A12)

Substituting Eq. (A8) into Eq. (A12) yields
=V, 1 C)dt

b Ko + C@)
Substituting Eq. (AS5) into Eq. (A13) yields
® Vot Cl)dt

b K. + C@®)

Vr
= V.- AUC + R AUC; (A13)

= AUC - (V, + Vp) = AUC - V,,
(Alda, b)

where V for this model is V, + V.
Multiplying both sides of Eq. (Al) by dt gives

V.- dC(@r) = "V CdE CLy - Ct)dt + Clo, Cl)dt
K, + C() R
(A15)
or
M = —V.-dC(t) — CLp - C(t)dr + % - Cr(t)dt
K, + C() R

(A16)
Integrating over the limits C(¢) = Cyat ¢ = 0 and C(¢) = 0 at
t = o yields
* Vo » C(t)dt CL,
———— =y V., — CLp - AUC + — - AUC;
b K + CQ) R
(A17)
Substituting Eq. (AS) into Eq. (A17) for AUCy yields
* V- C()dt

- CO'VC
0 Km + C(t)

=D (Al8a, b)
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Substituting Eqs. (A14b) and (A18b) into Eq. (5) yields

V..-AUC _ V,

MRT =
CL

(28a, b)
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NOMENCLATURE

A

€

Amount of drug eliminated from time zero to the
specified time

AUC Area under the plasma concentration versus time
curve

AUCy Area under the tissue concentration versus time
curve

AUMC Area under the time - plasma concentration
versus time curve

AUMC; Area under the time - tissue concentration versus
time curve

C(p) Plasma concentration at time ¢

Co Zero-time plasma concentration (iv bolus dose)

C1(®) Tissue concentration at time ¢

CL Plasma clearance

CL Time-average or concentration-average clearance

CL(?) Time-dependent plasma clearance

CLp Intercompartmental or distribution clearance

D Dose

Kir Fraction of material leaving a compartment per
unit of time

K, Michaelis—Menten constant

MRT Mean residence time of drug in the body

AMRT  Difference between MRT and AUMC/AUC

Cheng and Jusko

MRT, Mean residence time of drug in the central com-
partment

R Tissue-to-plasma distribution ratio

T Time

t Time

V. Apparent volume of distribution, central com-
partment

Vi Michaelis—Menten capacity constant

Vi Apparent volume of distribution, tissue compart-
ment

Vs Steady-state volume of distribution

X(7) Amount of drug in a compartment at time T

Z, Time of exit of drug from a compartment
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